https://ogma.newcastle.edu.au/vital/access/ /manager/Index en-au 5 Bamboo- and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:47530 Wed 19 Apr 2023 08:49:34 AEST ]]> Pristine and iron-engineered animal- and plant-derived biochars enhanced bacterial abundance and immobilized arsenic and lead in a contaminated soil https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:39503 −1) and lead (Pb = 736.2 mg kg−1). Soil properties, microbial activities, and the geochemical fractions and potential availabilities of As and Pb were determined in the non-treated (control) and biochar-treated soil. Modification of PB (pH = 10.6) and GWB (pH = 9.3) with Fe caused a decrease in their pH to 4.4 and 3.4, respectively. The application of PB and GWB significantly increased soil pH, while Fe-PB and Fe-GWB decreased soil pH, as compared to the control. Application of Fe-GWB and Fe-PB decreased the NH4H2PO4-extractable As by 32.8 and 35.9%, which was more effective than addition of GWB and PB. However, PB and GWB were more effective than Fe-PB and Fe-GWB in Pb immobilization. Compared to the control, the DTPA-extractable Pb decreased by 20.6 and 21.7%, respectively, following PB and GWB application. Both biochars, particularly PB significantly increased the 16S rRNA bacterial gene copy numbers, indicating that biochar amendments enhanced the bacterial abundance, implying an alleviation of As and Pb bio-toxicity to soil bacteria. The results demonstrated that pristine pig carcass and green waste biochars were more effective in immobilizing Pb, while their Fe-engineered biochars were more effective in As immobilization in co-contaminated soils.]]> Wed 07 Feb 2024 16:39:44 AEDT ]]> Animal carcass- and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: a trial for reclamation and improvement of degraded soils https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:36467 Mon 11 Mar 2024 17:44:29 AEDT ]]> Comparative analysis biochar and compost-induced degradation of di-(2-ethylhexyl) phthalate in soils https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:44117 - 1 di-(2-ethylhexyl) phthalate (DEHP) amended with biochar derived from dead pigs, bamboo, and composted sheep manure. The soils were thereafter incubated for 112 days at 25oC and periodically sampled for monitoring DEHP concentrations. Degradation of DEHP was described by a logistic model. Results showed that the initial degradation rates were slow, but accelerated after 14 days of incubation. The DEHP degradation rates were higher in the HOC soils than in the LOC soils over the incubation period. The half-lives of DEHP were shorter in the LOC soils treated with pig biochar, and bamboo/pig biochar plus compost than in the untreated soil. However, there was no significant difference in the half-lives of DEHP in the HOC control and treated soils. The differential effects of soil amendments on DEHP degradation between LOC and HOC soils could be explained by the properties of the organic amendments, soil pH and the organic carbon contents of the soils.]]> Fri 07 Oct 2022 14:19:32 AEDT ]]>